The Maximality of Cartesian Categories
ثبت نشده
چکیده
It is proved that equations between arrows assumed for cartesian categories are maximal in the sense that extending them with any new equation in the language of free cartesian categories collapses a cartesian category into a preorder. An analogous result holds for categories with binary products, which may lack a terminal object. The proof is based on a coherence result for cartesian categories, which is related to model-theoretical methods of normalization. The equations between arrows assumed for cartesian categories are maximal in the sense that extending them with new equations collapses the categories into preorders (i.e. categories in which between any two objects there is at most one arrow). The equations envisaged for the extension are in the language of free cartesian categories generated by sets of objects, and variables for arrows don't occur in them. If such an equation doesn't hold in the free cartesian category generated by a set of objects, then any cartesian category in which this equation holds is a preorder. An analogous result is provable for categories with binary products, which differ from cartesian categories in not necessarily having a terminal object. The proof of these results, which we are going to present below, is based on a coherence property of cartesian categories. This coherence, which is ultimately inspired by the geometric modelling of categories of [3], is related to model-theoretic methods of normalization. It permits to establish uniqueness of normal form for arrow terms without proceeding via the Church-Rosser property for reductions. It also yields an easy decision procedure for the commuting of diagrams in free cartesian categories. A category with binary products is a category with a binary operation × on objects, projection arrows k 1 A category has a terminal object T iff it has the special arrows
منابع مشابه
The Maximality of Cartesian Categories
It is proved that equations between arrows assumed for cartesian categories are maximal in the sense that extending them with any new equation in the language of free cartesian categories collapses a cartesian category into a preorder. An analogous result holds for categories with binary products, which may lack a terminal object. The proof is based on a coherence result for cartesian categorie...
متن کاملThe Maximality of the Typed Lambda Calculus and of Cartesian Closed Categories
From the analogue of Böhm’s Theorem proved for the typed lambda calculus, without product types and with them, it is inferred that every cartesian closed category that satisfies an equality between arrows not satisfied in free cartesian closed categories must be a preorder. A new proof is given here of these results, which were obtained previously by Richard Statman and Alex K. Simpson. Mathema...
متن کاملOn certain maximality principles
We present streamlined proofs of certain maximality principles studied by Hamkins and Woodin. Moreover, we formulate an intermediate maximality principle, which is shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$.
متن کاملCartesian closed stable categories q
The aim of this paper is to establish some Cartesian closed categories which are between the two Cartesian closed categories: SLP (the category of L-domains and stable functions) and DI (the full subcategory of SLP whose objects are all dI-domains). First we show that the exponentials of every full subcategory of SLP are exactly the spaces of stable functions. Then we prove that the full subcat...
متن کاملCartesian Differential Storage Categories
Cartesian differential categories were introduced to provide an abstract axiomatization of categories of differentiable functions. The fundamental example is the category whose objects are Euclidean spaces and whose arrows are smooth maps. Monoidal differential categories provide the framework for categorical models of differential linear logic. The coKleisli category of any monoidal differenti...
متن کامل